[vc_empty_space][vc_empty_space]
Heat-treated Escherichia coli as a high-capacity biosorbent for tungsten anions
Ogi T.a, Makino T.b, Iskandar F.c, Tanabe E.d, Okuyama K.a
a Department of Chemical Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
b Cutting Tool R and D Division, Kyocera Corporation, Satsumasendai, Kagoshima, 895-0292, Japan
c Department of Physics, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
d Hiroshima Prefectural Technology Research Institute, Higashi-Hiroshima, 739-0046, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 Elsevier Ltd.Adsorption performance in the biosorption of tungsten using Escherichia coli cells can be significantly improved by using cell suspensions that have been heat-treated at ≤100 °C. In the case of E. coli cells suspension heated at 100 °C, the aqueous tungsten ions concentration rapidly decreased from 0.8 mmol/L to practically zero within 1 h. This biosorption time is much shorter than that of non-heat treated E. coli cells (7 h). Furthermore, the adsorption saturation amount for cells heat-treated at 100 °C was significantly increased up to 1.62 mmol-W/g-E. coli compared to the unheated E. coli cells case (0.62 mmol-W/g-E. coli). Determination of the surface potential and surface structure along with quantitative analyses of free amino acids of heat-treated E. coli cells were also carried out and revealed that heated cells have a high zeta potential and express a higher concentration of amino acids on the cell surface.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adsorption performance,Amino acid analysis,Cell surfaces,Cell Suspension,Escherichia coli cells,Free amino acids,High capacity,Tungsten ions,Adsorption,Escherichia coli,Heating,Microscopy, Electron, Scanning,Spectroscopy, Fourier Transform Infrared,Surface Properties,Tungsten,Water[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Amino acid analysis,Biosorption,Recycling engineering,Tungsten,Zeta potential[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by JSPS KAKENHI Grant number 26709061 , Steel Foundation for Environmental Protection Technology . The authors thank Y. Sakamoto, T. Kondo and S. Nagai for assistance with biosorption experiments.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.biortech.2016.06.076[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]