[vc_empty_space][vc_empty_space]
Microwave synthesis of homogeneous and highly luminescent BCNO nanoparticles for the light emitting polymer materials
Iwasaki H.a,b, Ogi T.b, Iskandar F.c, Aishima K.b, Okuyama K.b
a Battery Materials Laboratory, Kurashiki Research Center, Kuraray Co., Ltd., Kurashiki, 710-0801, Japan
b Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Hiroshima, 739 8527, Japan
c Department of Physics, Institute of Technology Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 Elsevier B.V. All rights reserved.Nano-sized boron carbon oxynitride (BCNO) phosphors around 50 nm containing no rare earth metal and free from color heterogeneity were synthesized from mixtures of boric acid, urea, and citric acid by microwave heating with substantially shorter reaction times and lower temperatures than in the conventional BCNO preparation method such as electric-furnace heating. The emission wavelength of the phosphors varied with the mixing ratio of raw materials and it was found that lowering the proportion of urea to boric acid or citric acid tended to increase the internal quantum yield and shorten the emission wavelength under excitation at 365 nm. It was also found for the first time that a light-emitting polymer could be synthesized from a mixture of the prepared BCNO nanoparticles and a polyvinyl alcohol. This polymer composite exhibited uniform dispersion and stabilization of the luminescence and had a high internal quantum yield of 54%, which was higher than that of the phosphor alone.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Electric furnace heating,Emission wavelength,Light emitting polymer,Lower temperatures,Microwave synthesis,Preparation method,Rare earth metals,Uniform dispersions[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Luminescence,Microwave synthesis,Nanocomposite,Phosphor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by JSPS KAKENHI Grant numbers 26709061 and 24656413 . We thank Dr. Eishi Tanabe from the Hiroshima Prefectural Institute of Industrial Science and Technology for helping with TEM analyses.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.jlumin.2015.05.012[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]