Enter your keyword

2-s2.0-84930434344

[vc_empty_space][vc_empty_space]

Hydrolytic and transesterification activities of thermostable lipase ITB1.1

Brilliantoro R.a, Zidny R.a, Widhiastuty M.P.a, Akhmalokaa

a Biochemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Heterologous expression of local thermostable lipase (Lipase ITB1.1) has been carried out by using pET-30a(+) vector in Escherichia coli BL21(DE3). SDS-PAGE analysis showed that the protein size is around 50 kDa. Hydrolytic activity was determined at 70 °C and pH 8 by using p-Nitrophenyl palmitate (pNPP) as substrate. The activity of partial purified enzyme was significantly increased (0.56 U/mg) compared to that the crude extract (0.25 U/mg). Lipase ITB 1.1 has highest specific activity (1.23 U/mg) at 85 °C and pH 9.5. Further, characterization of the enzyme suggested that the enzyme exhibited transesterification activity. GC-MS spectra of the reaction product indicated that the coconut oil (substrate) was converted into methyl esters. The results suggesting that Lipase ITB1.1 is potential enzyme for biodiesel production.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Hydrolytic,Lipase,Thermostable enzyme,Transesterification[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.13005/bbra/1628[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]