Enter your keyword

2-s2.0-84921696276

[vc_empty_space][vc_empty_space]

Evolutionary algorithm based multi-objective aerodynamics optimization method for low reynolds number airfoil

Zuhal L.R.a, Dwianto Y.B.a, Palar P.S.a,b

a Bandung Institute of Technology, Indonesia
b Department of Aeronautics and Astronautics, University of Tokyo, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© (2014) Trans Tech Publications, Switzerland.This paper presents the development of multi-objective population-based optimization method, called Non-dominated Sorting Genetic Algorithm II (NSGA-II), to optimize the aerodynamic characteristic of a low Reynolds number airfoil. The optimization is performed by changing the shape of the airfoil to obtain geometry with the best aerodynamic characteristics. The results of the study show that the developed optimization tool, coupled with modified PARSEC parameterization, has yielded optimum airfoils with better aerodynamic characteristics compared to original airfoil. Additionally, it is found that the developed method has better performance compared to similar methods found in literature.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aerodynamic characteristics,Aerodynamic optimization,Aerodynamics optimizations,Low Reynolds number airfoils,Modified PARSEC,Non dominated sorting genetic algorithm ii (NSGA II),NSGA-II,Population-based optimization methods[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Modified PARSEC,Multi-objective aerodynamic optimization,NSGA-II[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMM.660.487[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]