[vc_empty_space][vc_empty_space]
Improving the Crystallinity and Purity of Monodisperse Ag Fine Particles by Heating Colloidal Sprays In-Flight
Ogi T.a, Fukazawa H.a, Rahmatika A.M.a, Hirano T.a, Cao K.L.A.a, Iskandar F.b
a Department of Chemical Engineering, Hiroshima University, Hiroshima, 739-8527, Japan
b Department of Physics, Institute of Technology Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Copyright © 2020 American Chemical Society.This work demonstrated the production of highly crystalline, monodisperse fine metal particles with high density and purity using a simple, facile rapid spray heating process. In this technique, a starting solution including fine Ag particles, prepared using a liquid phase method, is sprayed into a horizontal furnace. After this spray heating step, the crystallinity and purity of the particles are greatly improved relative to those of the initial particles, while the morphology and size distribution are maintained. Consequently, the volume resistivity of the Ag particles is decreased from 6.4 × 10-3 ω·cm (before spray heating) to 3.6 × 10-5 ω·cm (after spray heating at 500 °C). Detailed analyses show that this significant increase in conductivity results from the improved crystallinity, purity, and density of the material. The rapid spray heating method proposed in this research could be applied to other metals with the potential to produce high-quality fine metal particles.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Fine metal particles,Fine particles,Heating method,Heating process,Liquid-phase method,Morphology and size,Starting solutions,Volume resistivity[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was partly supported by JSPS KAKENHI grant number 19H02500 and by the Center for Functional Nano Oxides at Hiroshima University, the JSPS Core-to-Core Program, the Information Center of Particle Technology, Japan, the Hosokawa Powder Technology Foundation, The Mazda Foundation, and the Electric Technology Research Foundation of Chugoku. We thank Edanz Group ( www.edanzediting.com/ac ) for editing a draft of this manuscript.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1021/acs.iecr.9b05482[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]