Enter your keyword

2-s2.0-85081118543

[vc_empty_space][vc_empty_space]

Effect of NaTi2(PO4)3 Coating on Improving Capacity Retention of Li-rich Li1.13Ni0.2Co0.2Mn0.47O2 Cathode

Karunawan J.a, Irham M.A.a, Hendra Widyadharma P.a, Floweri O.a, Aimon A.H.a, Iskandar F.b

a Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Department of Physics, Bandung, Indonesia
b Department of Physics, Faculty of Mathematics and Natural Sciences Research Center for Nanosciences and Nanotechnology, National Center for Sustainable Transportation Technology (NCSTT), Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Li-rich NCM is a new promising type of cathode material for lithium-ion battery (LIB) applications. It has been reported that Li-rich NCM delivers superior specific capacity (>218 mAh/g). Despite its outstanding performance, some works have reported instability of the material upon cycling. Coating the cathode materials with a chemically stable material is considered as the best strategy to improve the stability of Li-rich NCM. In this work, Li1.13Ni0.2Co0.2Mn0.47, a type of Li-rich NCM cathode, was successfully synthesized via a simplified solid-state method. The resulted product was then coated with NaTi2(PO4)3 (NTP), a promising phosphate compound with excellent chemical stability and superior ionic conductivity. It was found that NTP-coated Li-rich NCM delivered better electrochemical properties compared to the pristine one, as was determined by charge-discharge battery characterization.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Capacity retention,Charge-discharge,NaTi2(PO4)3,Phosphate compounds,Solid state method,Specific capacities[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]cathode,li-ion battery,li-rich ncm,NaTi2(PO4)3[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT This proceeding supported by USAID through Sustainable Higher Education Research Alliances (SHERA) Program.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEVT48285.2019.8993861[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]