[vc_empty_space][vc_empty_space]
Facile and Efficient Removal of Tungsten Anions Using Lysine-Promoted Precipitation for Recycling High-Purity Tungsten
Ogi T.a, Makino T.b, Nagai S.a, Stark W.J.c, Iskandar F.d, Okuyama K.a
a Department of Chemical Engineering, Hiroshima University, Hiroshima, 739-8527, Japan
b Cutting Tool R&D Division, Kagoshima Sendai Plant, Kyocera Corporation, Satsumasendai, Kagoshima, 895-0292, Japan
c Institute for Chemical and Bioengineering, ETH Zurich, Zurich, CH-8093, Switzerland
d Department of Physics, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 American Chemical Society.We present a facile method for tungsten ion removal using lysine for the development of an environmentally friendly and sustainable recycling technique. Lysine addition to the tungsten solution achieved 100% tungsten removal within 5 min, as a white lysine-tungsten precipitate. Electrospray ionization mass spectrometry analyses of the tungsten and lysine mixed solutions showed that lysine promoted dehydration condensation reactions of anionic tungsten species such as HWO4- and W6O192- through the electrostatic interactions between positively charged lysine and negatively charged tungsten ions. Calcination of the lysine-tungsten precipitate produced tungsten oxide powder of high purity (99.6%) because the lysine is completely decomposed. This facile and useful metal removal method can be used for polyoxometalates of other metals such as molybdenum, tantalum, and niobium.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Electrospray ionization mass spectrometry,High purity,Negatively charged,Polyoxometalates,Positively charged,Rare metals,Recycling techniques,Settling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adsorption,Amino acid,High-purity recycling,Polyoxometalate,Recovery of rare metal,Settling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by JSPS KAKENHI Grant Number 26709061, Steel Foundation for Environmental Protection Technology. This work is partly supported by the Center for Functional Nano Oxide at Hiroshima University. The authors also thank Y. Sakamoto, T. Kondo, and H. Horiuchi for help with experiments and measurements.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1021/acssuschemeng.6b02934[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]