[vc_empty_space][vc_empty_space]
Biodegradable Polymer-Coated Multifunctional Graphene Quantum Dots for Light-Triggered Synergetic Therapy of Pancreatic Cancer
Yang C.a, Chan K.K.b, Xu G.a, Yin M.b, Lin G.a, Wang X.a, Lin W.-J.c, Birowosuto M.D.d, Zeng S.d, Ogi T.e, Okuyama K.e, Permatasari F.A.e,f, Iskandar F.f, Chen C.-K.g, Yong K.-T.b
a Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Sciences Center, Shenzhen University, Shenzhen, 518060, China
b School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
c Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
d CINTRA CNRS/NTU/THALES UMI 3288, Research Techno Plaza, Singapore, 637553, Singapore
e Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima, 7398527, Japan
f Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
g Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, China
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 American Chemical Society.In this work, we reported the synthesis of an engineered novel nanocarrier composed of biodegradable charged polyester vectors (BCPVs) and graphene quantum dots (GQDs) for pancreatic cancer (MiaPaCa-2 cells) therapy applications. Such a nanocarrier was utilized to co-load doxorubicin (DOX) and small interfering ribonucleic acid (siRNA), resulting in the formation of GQD/DOX/BCPV/siRNA nanocomplexes. The resulting nanocomplexes have demonstrated high stability in physiologically mimicking media, excellent K-ras downregulation activity, and effective bioactivity inhibition for MiaPaCa-2 cells. More importantly, laser light was used to generate heat for the nanocomplexes via the photothermal effect to damage the cells, which was further employed to trigger the release of payloads from the nanocomplexes. Such triggered release function greatly enhanced the anticancer activity of the nanocomplexes. Preliminary colony formation study also suggested that GQD/DOX/BCPV/siRNA nanocomplexes are qualified carrier candidates in subsequent in vivo tests.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anticancer activities,BCPV,Colony formation,Multi-functional graphene,Pancreatic cancers,Photothermal effects,siRNA,Triggered release,Biodegradable Plastics,Cell Survival,Doxorubicin,Graphite,Humans,Light,Nanoparticles,Pancreatic Neoplasms,Phototherapy,Polymers,Quantum Dots[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]BCPV,DOX,graphene quantum dots,light-triggered,pancreatic cancer,siRNA[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘This work was supported by the Singapore Ministry of Education (Grants Tier 2 MOE2010-T2-2-010 (M4020020.040 ARC2/11), the NTU-NHG Innovation Collaboration Grant (M4061202.040), the NTU-A*STAR Silicon Technologies, Centre of Excellence, under the program grant no. 11235100003, the NEWRI seed funding (grant no. NEWRI SF20140901), the research grants (nos. MOST 106-2221-E-224-058-; MOST 107-2221-E-224-059-MY2) supported by the Ministry of Science and Technology of Taiwan, and the grants from the National Natural Science Foundation of China (NSFC) (81400591). The authors thank for the help on the data analysis from Dr. Yining Lin at Shenzhen University. The authors also gratefully acknowledge the support from Instrumental Analysis Center of Shenzhen University.’}, {‘$’: ‘This work was supported by the Singapore Ministry of Education (Grants Tier 2 MOE2010-T2-2-010 (M4020020.040 ARC2/11) the NTU-NHG Innovation Collaboration Grant (M4061202.040), the NTU-ASTAR Silicon Technologies, Centre of Excellence, under the program grant no. 11235100003, the NEWRI seed funding (grant no. NEWRI SF20140901) the research grants (nos. MOST 106-2221-E-224-058-; MOST 107-2221-E-224-059-MY2) supported by the Ministry of Science and Technology of Taiwan, and the grants from the National Natural Science Foundation of China (NSFC) (81400591).’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1021/acsami.8b16168[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]