Enter your keyword

2-s2.0-84961325641

[vc_empty_space][vc_empty_space]

Improved generalizations of the Karatsuba algorithm in GF(2n)

Nursalman M.a, Sasongko A.b, Kurniawan Y.b, Kuspriyantob

a Department of Computer Science, Universitas Pendidikan Indonesia, Bandung, Indonesia
b School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2014 IEEE.The process of multiplications in Finite Fields required huge resources. If those implemented in the Elliptic Curve Cryptography (ECC), the need of resources would be inflated because those processes were enough to dominated in every ECC level. There were many researches to found methods that could reduce the number of multiplications. One method that was well-known and developed was Karatsuba ofman algorithm, where the development of this research were General Karatsuba Multiplier, Efficient Multiplier in GF((2n)4) Generalizations of Karatsuba Algorithm, 5-6-7 Term Karatsuba-Like Formulae, and improved modulo functions. From those researches is made a better algorithm than Generalizations of Karatsuba Algorithm and it is expected to leads to generalize the form n-Term Karatsuba-Like Formulae.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]5,6,7-Term Karatsuba Like Formulae,Efficient Multiplier in GF((2n)4),General Karatsuba Multiplier,Karatsuba algorithm,Karatsuba-Ofman algorithm[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]5,6,7-Term Karatsuba Like Formulae,Efficient Multiplier in GF((2n)4),General Karatsuba Multiplier,Improved Generalizations of The Karatsuba Algorithm,Karatsuba Ofman Algorithm[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICAICTA.2014.7005938[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]