[vc_empty_space][vc_empty_space]
Color-based segmentation and feature detection for ball and goal post on mobile soccer robot game field
Fitriana A.N.a, Mutijarsa K.a, Adiprawita W.a
a Department of Electrical Engineering, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.This study presents the real time implementation of object detection and tracking algorithm on mobile soccer robot. Object detection is considered as one of the most important task because ball and goal post are the main component in soccer. The system uses the combination of color-based segmentation and feature detection to detect the color and also the shape feature of the object used in the soccer robot game. The color segmentation uses thresholding method in Hue, Saturation, and Value (HSV) color space to differentiate the ball and goal post color from other objects in the field. Then, morphological operation is applied to the thersholded image to minimize the error. After that, Hough line transform is applied to detect the feature of the goal post. Then, ellipse detection is also applied to find the ball feature. This step is used so the desired object is correctly detected, not other object that have the same color. The final step is to calculate the image moments to determine the centroid of the objects and tracking it. Object’s color, feature, and coordinate are obtained from this purposed method. In the implementation, the robot has successfully detect ball, goal post, and its position in a real time manner.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Color-based segmentation,Ellipse detection,Feature detection,Hough lines,Image moments,Morphological operations,Real time,Soccer robot[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]color based segmentation,ellipse detection,feature detection,Hough line transform,image moments,mobile soccer robot,morphological operation,real time object detection[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICITSI.2016.7858232[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]