Enter your keyword

2-s2.0-85075024457

[vc_empty_space][vc_empty_space]

Analysis of stenosis effect on blood pressure using moving particle semi-implicit method

Purnama H.a, Suprijadia, Kurniasih N.a

a Knowlegde and Software Engineering Reseach Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Computational fluid dynamics are developed by scientists in the last few decades. Computing is used to explain the physical problem which is using a numerical method. In this paper, the phenomenon of stenosis inhibited blood flow is simulated and observed using the Moving Particle Semi-Implicit Method. The simulation was built using the Navier-Stokes equation. This simulation does not use data with quantitative units because it only aims to observe the phenomenon of blockage of stenosis in the bloodstream, so the value was obtained without units. The velocity profile of the blood particles which are located between the rigid stenosis will be fastest if the percentage of stenosis is higher. The velocity profile shows a fluctuation in the direction of the radial position = 0 when the horizontal position is 1.5 x 2.5 with the maximum velocity when the stenosis is 60% i.e 9.2 units. This shows that there are obstacles that cause the velocity profile to be higher than the blood flow without stenosis, and the greater the percentage of stenosis, the greater the fluctuations occurring in the area so that it has a higher velocity.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Blood flow,Maximum velocity,Moving particle semiimplicit method,Radial position,Velocity profiles[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1341/6/062010[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]