Enter your keyword

2-s2.0-84903954876

[vc_empty_space][vc_empty_space]

Macro Demand Spatial Approach (MDSA) combined with principal component analysis and qualitative analysis on spatial demand forecasting for main development area in transmission planning

Sasmono S.a, Sinisuka N.I.a, Atmopawiro M.W.a, Darwanto D.a

a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Macro Demand Spatial Approach (MDSA) is an approach introduced in long time electricity demand forecasting considering location. It will be used at transmission planning and policy decision on electricity infrastructure development in a region. In the model, MDSA combined with principal component analysis (PCA) and qualitative analysis (QA) to determine main development area in region and the variables that affecting electricity demand in there. Main development area is an area with industrial domination as a driver of economic growth. The electricity demand driver variables are different for type of electricity consumer. However, they will be equal for main development areas. The variables have no significant effect can be reduced by using PCA. The generated models tested to assess whether it still at the range of confidence level of electricity demand forecasting. At the case study, generated model for main development areas at South Sumatra Subsystem as a part of Sumatra System is still in the range of confidence level. Thus, MDSA can be proposed as alternative approach in transmission planning that considering location. © 2013 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Demand forecasting,Electricity consumers,Electricity demand forecasting,Electricity demands,Electricity infrastructure,main development area,Qualitative analysis,Transmission Planning[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]electricity demand forecasting,macro demand spatial approach,main development area,principal component analysis,transmission planning[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/APPEEC.2013.6837256[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]