Enter your keyword

2-s2.0-85045679441

[vc_empty_space][vc_empty_space]

Basin resonance and seismic hazard in jakarta, Indonesia

Cipta A.a, Cummins P.a, Irsyam M.c, Hidayati S.d

a Research School of Earth Sciences, Australian National University, Badan Geologi, Canberra, Australia
b Research School of Earth Sciences, Australian National University, GeoScience Australia, Canberra, Australia
c Civil Engineering Department Institut Teknologi Bandung, Bandung, Indonesia
d Badan Geologi, Canberra, Australia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 by the authors. Licensee MDPI, Basel, Switzerland.We use earthquake ground motion modelling via Ground Motion Prediction Equations (GMPEs) and numerical simulation of seismic waves to consider the effects of site amplification and basin resonance in Jakarta, the capital city of Indonesia. While spectral accelerations at short periods are sensitive to near-surface conditions (i.e., VS30, average shear-wave velocity at topmost 30 m of soil), our results suggest that, for basins as deep as Jakarta’s, available GMPEs cannot be relied on to accurately estimate the effect of basin depth on ground motions at long periods (>3 s). Amplitudes at such long periods are influenced by trapping of seismic waves in the basin, resulting in longer duration of strong ground motion, and interference between incoming and reflected waves as well as focusing at basin edges may amplify seismic waves. In order to simulate such phenomena in detail, a basin model derived from a previous study is used as a computational domain for deterministic earthquake scenario modeling in a 2-dimensional cross-section. A Mw 9.0 megathrust, a Mw 6.5 crustal thrust and a Mw 7.0 intraslab earthquake are chosen as scenario events that pose credible threats to Jakarta, and the interactions with the basin of seismic waves generated by these events were simulated. The highest long-period PGVs amplifications are recorded at sites near the middle of the basin and near its southern edge, with maximum amplifications of PGV in the horizontal component of 726% for the crustal, 1500% for the megathrust and 1125% for the deep intraslab earthquake scenario, respectively. We find that the levels of response spectral acceleration fall below those of the 2012 Indonesian building Codes’s design response spectra for short periods (<1 s), but closely approach or may even exceed these levels for longer periods.[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Author keywords" size="size-sm" text_align="text-left"][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Indexed keywords" size="size-sm" text_align="text-left"][vc_column_text]Basin-induced amplification,GMPE,Openquake,Seismic hazard,SPECFEM2D[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Funding details" size="size-sm" text_align="text-left"][vc_column_text]Acknowledgments: Computations were performed on the Raijin cluster of the Australian Computational Infrastructure Facility. This work was partially supported by the Australian Department of Foreign Affairs and Trades Grant 91982 and the Australian Research Council (ARC) Linkage Grant LP110100525. A.C. was supported by a scholarship from the Indonesian Ministry of Energy and Mineral Resources (MAK 020.01.01.1881.002.001.012 A.521219). We would like to thank reviewers for their insightful comments and suggestions on the manuscript that led us to improve our work. Our revisions reflect all reviewers’ suggestions and comments.[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="DOI" size="size-sm" text_align="text-left"][vc_column_text]https://doi.org/10.3390/geosciences8040128[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]