Enter your keyword

2-s2.0-85083116162

[vc_empty_space][vc_empty_space]

Performance evaluation of low-cost iot based chlorophyll meter

Andrianto H.a, Suhardia, Faizal A.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, Institute of Advanced Engineering and Science. All rights reserved.Nutrient deficiencies in plants can be identified using a chlorophyll meter. However, current chlorophyll meters are still expensive and have many disadvantages. In this paper, a low-cost IoT-based chlorophyll meter has been developed. The performance of a low-cost IoT-based chlorophyll meter has been compared with the performance of a spectrophotometer (SP-3000nano) and a commercial chlorophyll meter (SPAD-502). A low-cost IoT-based chlorophyll meter has been functioning properly which is able to measure the chlorophyll content of plants in the field, get positions based on GPS satellites, store data in a memory module, and send data to the service system platform. The test results showed the coefficient of determination (R2) between SPAD-502 values and low-cost IoT-based chlorophyll meter values is 0.9705, this shows a significant correlation. An IoT-based chlorophyll meter can be used as a cheap alternative to the SPAD-502 chlorophyll meter.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chlorophyll meter,Internet of Things (IoT),Plant nutritional deficiencies[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘Authors would like to thank Institut Teknologi Bandung for the financial support that has been provided (Grants No. 684b/I1. B04.2/SK/2018). Thanks also to Universitas Kristen Maranatha for funding scholarships.’}, {‘$’: ‘Authors would like to thank Institut Teknologi Bandung for the financial support that h as been provided (Grants No. 684b/I1. B04.2/SK/2018). Thanks also to Universitas Kristen Maranatha for funding scholarships.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.11591/eei.v9i3.2014[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]