Enter your keyword

2-s2.0-84855928250

[vc_empty_space][vc_empty_space]

3D kinematics of human walking based on segment orientation

Mihradi S.a, Henda A.I.a, Dirgantara T.a, Mahyuddin A.I.a

a Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Human walking analysis is instrumental in medical rehabilitation because it gives quantitative information of human body segment during walking. The present work is a part of research on the development of 3D gait analyzer system. The system consists of a program to process and display 3D kinematics parameter of human gait based on position and displacement of markers. Observational data is in the form of marker position as a function of time in x, y, z axis. This data is then processed to obtain somegait parameters. To achieve good results, the marker position data is initially smoothed to eliminate noises before further processing. The program developed in the present research could succesfully calculate some parameters of human gait such as spatio temporal parameters, linear kinematics and angular kinematics of joints. © 2011 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3-D kinematics,Analyzer system,Function of time,Human body models,Human body segments,Human gait,Human walking,Linear kinematics,Observational data,Position data,Quantitative information,Spatio temporal[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3D Kinematics,Gait Analysis,Human Body Model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2011.6108632[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]