Enter your keyword

2-s2.0-84963949131

[vc_empty_space][vc_empty_space]

Design of root canal treatment for dental post application on maxillary central incisor

Susanto S.S.a, Wicaksono S.a, Mahyuddin A.I.a, Dirgantara T.a, Subrata G.b, Mihradi S.a, Budiaman A.S.a

a Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, 40132, Indonesia
b Faculty of Dentistry, Universitas Padjadjaran, Jatinangor, 45363, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 IEEE.The main purpose of this study is to evaluate the stress distribution on the maxillary central incisor tooth that has been endodontically treated and restored with silver alloy (silver-palladium) cast post-cores, and to find the optimum wall thickness and height of ferrule for dentin. 3D numerical analysis was done using ANSYS 14® software. Evaluation of stress distribution were done upon eight different variants of maxillary central incisor tooth with ferrule root restoration. The ferrule was modeled with ferrule height variation of 0,5 mm, 1 mm, 1.5 mm, and 2 mm, with constant ferrule wall thickness of 1mm, while ferrule wall thickness variation of 0.8 mm, 0,9 mm,1 mm, 1,1 mm, and 1.2 mm was modeled with constant ferrule height of 2 mm. Analysis of ferrule which was done with the help of finite element method shows that the optimum ferrule height is 1,5 mm and the optimum ferrule wall thickness is 1 mm. Both models have shown to have the least amount of stress on every components of the tooth. Variants of tooth models have shown to have range of maximum principal stress from 51 MPa to 81,3 MPa and range of minimum principal stress from 12 MPa to 21 MPa, which is far below maximum tensile strength (98 MPa) and compressive strength (297 MPa) of the dentin.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3-D numerical analysis,3D reconstruction,Endodontic treatment,Maximum principal stress,Optimum wall thickness,Root canal treatment,Root canals,Silver palladiums[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3D reconstruction,endodontic treatment,ferrule root canal design,finite element analysis,silver alloy postcores[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICICI-BME.2015.7401354[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]