Enter your keyword

2-s2.0-77950143763

[vc_empty_space][vc_empty_space]

Time-frequency features combination to improve single-trial EEG classification

Yonas A.a, Prihatmanto A.S.a, Mengko T.L.a

a Biomedical Engineering Research Division, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]In this paper, we propose a combination of two simple feature extraction methods from time and frequency domain to improve singe-trial EEG classification in self-paced BCI. ‘Bereitschaftspotential’ (BP) features from time domain and event-related desynchronization (ERD) features from frequency domain are merged and feed into four different classifiers which are probabilistic neural network (PNN), support-vector machine (SVM), K-nearest neighbor (KNN), and Parzen classifier (PC). Results using BCI competition 2003 [1] dataset IV are showing that the combined features are quite discriminative as we reached an accuracy on the test set ranging from 82% to 85% whereas the winner of the competition on this data set reached 84% using three types of features [2,3].[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Event related desynchronization,Feature classification,Feature combination,Feature extraction methods,K nearest neighbor (KNN),Probabilistic neural networks,Single-trial EEG,Time and frequency domains[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Brain-Computer Interface (BCI),Fast Fourier Transform (FFT),Feature classification,Feature combination,Single-trial EEG[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/978-3-642-03882-2_214[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]