Enter your keyword

2-s2.0-85010465133

[vc_empty_space][vc_empty_space]

DC field distribution in XLPE-insulated DC model cable with polarity inversion and thermal gradient

Adi N., Teyssedre G., Vu T.T.N.b, Sinisuka N.I.c

a LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Bat 3R3, Toulouse, 31062, France
b Electric Power Unversity, Hanoi, Viet Nam
c School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.The electric field distribution in polymer dielectric under DC stress is temperature and time dependent and it can be determined by using conductivity which is also dependent on field and temperature. The distribution of the field, that directly impacts the cable performances, is driven by the conduction mechanisms and settles with giving rise to a space charge distribution across the insulation. To predict conductivity-related electric field distributions, conduction current measurement under various electrical and thermal conditions in time need to be recorded. The current measurement is eventually made with polarity reversal in order to relate to the field distribution under this condition. The aim of this paper is to observe and investigate the steady state and transient electric field distribution in miniaturized HVDC power cables with construction of 1.5 mm cross-linked polyethylene (XLPE) insulation thickness. The determination of field distribution is achieved by computation using current-voltage model for current transient in cable geometry approach. Both isothermal and thermal gradient conditions for the cable are analyzed, as a function of stressing time and applied voltage. The most critical stresses for the model cases are identified.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Conduction Mechanism,Crosslinked polyethylene,Current-voltage models,Electric field distributions,HVDC cables,Insulation thickness,Polarity reversal,Steady state and transients[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Conductivity,electric field distribution,HVDC cable,polarity reversal,space charge,thermal gradient[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICHVE.2016.7800612[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]