Enter your keyword

2-s2.0-85016073476

[vc_empty_space][vc_empty_space]

Structure health monitoring using fourier transform and neural network

Auditia A.I.a, Rusmin P.H.a

a School of Electrical Enginering and Informatics, Institut Teknologi Bandung, Bandung, Jawa Barat, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.This paper studies about one of methods in Structural Health Monitoring (SHM) systems, and includes with implementation in real time. The method using in this paper is Neural networks for recognation by read pattern from vibration at plate surface. To perform detection vibration, we use pieze-sensor, which this sensor works with change value of vibration to voltage. For implementaion, This systems use a Labview for monitoring and programing, so each event can see directly in realtime. Many Analysis prosess include in code program such as a fourier transform, Neural network, and regretion. Before anlysis processing, we must change value analog signal to digital signal with help of ADC from microcontroler. Another function in This microcontroller is a source of vibration, so it can be produce a sinus signal and transfer it to the speaker. This embeded systems can be detect damage and undamage conditions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analog signals,Digital signals,Embeded systems,LabViEW,Plate surfaces,Regression,Structural health monitoring (SHM),Structure health monitoring[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Fourier Transform,Labview,Neural Network,Regression,SHM[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/FIT.2016.7857557[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]