Enter your keyword

2-s2.0-85087897263

[vc_empty_space][vc_empty_space]

Intelligent traffic light control system at two intersections using adaptive neuro-fuzzy inference system (ANFIS) method

Utomo R.A.B.a, Permana D.A.a, Rusmin P.H.a

a Electrical Engineering Dept., School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 American Society of Civil Engineers.Along with population, economy, and vehicle use growth, traffic congestion is rapidly spreading in big cities in Indonesia especially capital cities like Bandung. For the purpose of solving congestion problem by decreasing vehicles queue on the streets, a method with ANFIS system is proposed in this study. Using two adjacent intersections at Djuanda-Bandung as case study and ANFIS as controller, the system is divided into two subsystems which are capable of controlling traffic light phase duration for both intersections based on real-Time traffic condition. Value of vehicles queue and change of the vehicles queue are used as ANFIS input. ANFIS will give an output as street urgency. Using MATLAB, simulation is run and the result is compared to fixed time cycle system which is conventional system applied to the intersections.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adaptive neuro-fuzzy inference system,Adjacent intersections,Congestion problem,Conventional systems,Intelligent traffics,Real-time traffic conditions,Traffic light,Vehicle use[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1061/9780784481899.092[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]