[vc_empty_space][vc_empty_space]
Experimental evaluation of the viscous properties of sand in shear
Nawir H.a,b, Tatsuoka F.b, Kuwano R.b,c
a Department of Civil Engineering, Bandung Institute of Technology, Indonesia
b University of Tokyo, Japan
c Publics Works Research Institute, Independent Administrative Institution, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Effects of wet conditions (air-dried or saturated), pressure level and dry density on the viscous properties of sand were evaluated by performing unconventional triaxial compression tests on Toyoura sand. Effects of stress path were studied to a limited extent. During otherwise monotonic loading at a constant strain rate, the strain rate was changed stepwise and/or creep loading was performed after different strain rate histories. The test results were analysed in the framework of a three-component model, called the TESRA model, that had been developed based on the results from plane strain compression tests on dense Hostun and Toyoura sands at a confining pressure of 400 kPa. The manner of viscous stress change by a change in the irreversible shear strain rate observed under the various test conditions could be represented by the same viscosity function representing the viscous properties. The viscous stress decayed with an increase in the irreversible shear strain in all the tests, while the rate of decay was noticeably larger with air-dried sand than with saturated sand. The TESRA model using the same viscosity and decay functions simulates very well the effects of viscous properties observed in the whole tests.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Constitutive modeling,Triaxial compression tests,Viscous properties[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Constitutive modelling,Creep,Deformation,Sand,Triaxial compression tests,Viscous properties (IGC: D6/ D7)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3208/sandf.43.6_13[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]