Enter your keyword

2-s2.0-85086688181

[vc_empty_space][vc_empty_space]

Seismic wave modeling of numerical dispersion using cross-rhombus stencil

Sonya A.D.a, Sanny T.A.a

a Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 European Association of Geoscientists and Engineers EAGE. All rights reserved.Finite difference is a popular method that used for seismic wave modelling, but it still suffer from numerical dispersion problem. Stencil is one of finite difference aspect that affect its accuracy, including the dispersion. Cross-rhombus stencil is a new stencil scheme which combine the standard stencil and a diamond-shaped stencil called rhombus stencil. It is proved that it can reduce numerical dispersion in finite difference method and increasing its efficiency. Since it is new scheme, cross-rhombus stencil has a lot of things to be studied. We described basic theory of this stencil scheme and its application to a simple seismic modeling simulation. Keywords: finite difference, seismic modeling, dispersion, stencil, cross-rhombus stencil, Courant number.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Basic theory,Courant numbers,ITS applications,Its efficiencies,Numerical dispersions,Seismic model,Seismic wave modeling,Wave modelling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3997/2214-4609.201800368[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]