Enter your keyword

2-s2.0-85054422838

[vc_empty_space][vc_empty_space]

Development of a simple CO2 sensor based on the thermal conductivity detection by a thermopile

Febrina M.a, Satria E.a, Djamal M.a, Srigutomo W.a, Liess M.b

a High Theoretical Energy Physics and Instrumentation, Department of Physics, Bandung Institute of Technology, Bandung, Indonesia
b Department of Engineering, RheinMain University of Applied Sciences, Germany

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Elsevier LtdA simple and effective thermal conductivity based CO2 gas sensor has been successfully developed. The CO2 sensor consists of a modified IR thermopile sensor without an IR window. The thermopile is heated by the AC current that is applied through the output terminals of the device, which in turn leads to a temperature gradient generating a DC output voltage. The gas exposed to the thermopile simultaneously cool down the thermopile. Thus, the thermopile can simultaneously serve as a heater and temperature sensor. The built-in sensors possess low production costs, low power consumption and are easily manufactured. From the conducted experiments, the sensor can work well, and the results can be validated with the established theory, as evidenced by the RMS error of 0.787. The measurement results are also in a good agreement with the model predictions Mason and Saxena for the thermal conductivity of gas mixtures.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Built-in sensors,CO2 gas sensor,Conductivity detection,Effective thermal conductivity,Low-power consumption,Model prediction,Output voltages,Thermopile sensors[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CO2 gas sensor,Thermal conductivity,Thermopile[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The research was supported by “Pendidikan Magister menuju Doktor Sarjana Unggul (PMDSU)” Indonesian Government scholarship program (contract number: 794e/I1.C01/PL/2016) and “Osaka Gas Foundation of International Culture Exchange (OGFICE) 2017 Grant for Institut Teknologi Bandung (contract number: 5669/I1.B04.1/PL/2017)”. The authors would also like to express their gratitude to Mr. Grandprix T. Kadja for English proofreading of this paper.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.measurement.2018.09.082[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]