Enter your keyword

2-s2.0-84902436864

[vc_empty_space][vc_empty_space]

Integration of Genetic and Tabu Search algorithm based load balancing for heterogenous grid computing

Darmawan I.a, Kuspriyantob, Priyan Y.b, Joseph M I.b

a Dpt. Electrical Engineering and Informatics, University of Siliwangi, Indonesia
b School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Load balancing is a major problem in grid computing systems to balance the computing resources are used to achieve optimal load processing time. The method used in load balancing by adjusting burden on computing resources that will be provided. Coordination of each computing resource is done by looking at the ability of each computing resource. Load balancing algorithm for heterogeneous computing resources in a grid computing environment using the integration of the two heuristic optimization algorithm Genetic Algorithm (GA) and Tabu Search (TS) as the Integration of Genetic and Tabu Search (IGTS). IGTS algorithm utilizes the strengths of each algorithm used, the first force in the GA global search and local search in both the strength of the TS method. IGTS algorithm will map the jobs to be processed on the computational resources that are used to get a faster time makespan and the minimum value of balance. © 2013 IEEE.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Computational resources,Computing resource,Grid computing environment,Grid computing systems,Heterogeneous computing,Heuristic optimization algorithms,Load balancing algorithms,Tabu search algorithms[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Genetic Algorithms,Grid Computing,Load Balancing,Tabu Search[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/IC3INA.2013.6819195[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]