Enter your keyword

2-s2.0-84890861555

[vc_empty_space][vc_empty_space]

Protonation of Al-grafted mesostructured silica nanoparticles (MSN): Acidity and catalytic activity for cumene conversion

Sazegar M.R.a, Jalil A.A.a, Triwahyono S.a, Mukti R.R.b, Aziz M.a, Aziz M.A.A.a, Setiabudi H.D.c, Kamarudin N.H.N.a

a Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
b Division of Inorganic and Physical Chemistry, Fac. of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
c Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Malaysia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]The hexagonal structure of the mesostructured silica nanoparticles (MSN) based solid acid catalyst was synthesized using 1,2-propanediol as a co-solvent by sol-gel method, followed by aluminum grafting and protonation. The activity of the catalysts was tested for cumene conversion in a pulse microcatalytic reactor at 323-573K. XRD, TEM and N2 physisorption results confirmed the hexagonal ordered structure with a pore diameter of 3.4-4.0nm, a particle size of 70-120nm and a surface area of 588-995m2/g. Solid state NMR and IR results confirmed that the aluminum grafting and protonation form framework and extra-framework aluminums which led to generating strong Brønsted and Lewis acidic sites. High activity in the cumene conversion was only observed on HAlMSN producing propylene, benzene, toluene via a cracking on protonic acid sites and producing a main product of α-methylstyrene via a dehydrogenation on Lewis acidic sites at high reaction temperature. While only α-methylstyrene and higher hydrocarbon (≥C10) were produced at low reaction temperature showing the permanent Brønsted acid sites did not involve in the cumene conversion. It is suggested that the presence of hydrogen and strong Lewis acid sites increased the stability and activity of the HAlMSN catalyst in the cumene conversion. Although the small deactivation of HAlMSN was observed during the reaction due to the formation of small coke deposits on the surface, the reactivation recovered the activity of catalyst and the high activity was still observed after 60h of reaction. The high stability and activity of HAlMSN in the cumene conversion can be considered as a method for the production of α-methylstyrene via a dehydrogenation process. © 2013 Elsevier B.V.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cumene,Extra-framework aluminum,HAlMSN,High reaction temperatures,Mesostructured silica,Methylstyrene,Micro-catalytic reactors,MSN[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]α-Methylstyrene,Cumene,Dehydrogenation,HAlMSN,MSN[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by The Ministry of Higher Education, Malaysia through the Exploration Research Grant Scheme (No. 4L023 ). Special thanks to Prof. Dr. Hadi Nur (Ibnu Sina Institute, UTM) for MAS-NMR analyses.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.cej.2013.12.004[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]