[vc_empty_space][vc_empty_space]
Development of authenticated key exchange protocol for IoT sensor layer
Bandung Y.a, Arvandya
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, School of Electrical Engineering and Informatics. All rights reserved.An authenticated key exchange for the Internet of Things (IoT) sensor layer is discussed in this paper. This paper presents an enhanced key exchange protocol to provide an authentication scheme and data confidentiality for IoT sensor layer. In our approach, we incorporate an identity-based authentication scheme into the existing key exchange protocol based on Elliptic Curve Diffie Hellman (ECDH). We utilize two communication channels for the process, main channel and auxiliary channel. The main channel is used to exchange key and sensor data and the auxiliary channel is used to exchange the identity information prior to the key exchange process. To provide the data confidentiality, AES encryption algorithm is implemented with a key derived from shared secret key to ensure the Perfect Forward Secrecy. For the evaluations, there are four parameters that are evaluated: the protocol resistance, formal verification of protocol, the protocol security, and performance testing. The protocol resistance was evaluated using security analysis against common security threats on IoT sensor layer. The formal verification of the proposed protocol was evaluated using Scyther, and the protocol security was evaluated using attack scenarios (i.e., authentication and sniffing attack) to prove the authentication and confidentiality. The performance testing was conducted to measure time complexity and memory complexity of the protocol. The experiment results show that the proposed protocol is able to provide an authentication mechanism, data confidentiality, and resilience against common security threats at IoT sensor layers.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]AES,Authenticated Key Exchange,ECDH,IoT Security,Sensor Layer[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.15676/ijeei.2020.12.3.11[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]