Enter your keyword

2-s2.0-85064762254

[vc_empty_space][vc_empty_space]

Identifying the Components and Interrelationships of Smart Cities in Indonesia: Supporting Policymaking via Fuzzy Cognitive Systems

Firmansyah H.S.a, Supangkat S.H.a, Arman A.A.a, Giabbanelli P.J.b

a School of Electrical and Informatics Engineering, Institute of Technology Bandung, Bandung, 40132, Indonesia
b Computer Science Department, Furman University, Greenville, 29613, United States

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2013 IEEE.Multiple Indonesian cities currently aim to qualify as ‘smart cities.’ Previous research on defining smart cities (e.g., the implementation-oriented maturity model) tends to focus on components over interrelationships, is challenging to apply to a specific context such as Indonesia, and offers limited support for policy-relevant questions. In this paper, we propose to address these shortcomings to support policymakers in identifying concrete action plans in Indonesia specifically. Our approach clarifies interrelationships for the context of use and supports structural (e.g., what aspects of a ‘smart city’ are impacted by an intervention?) as well as what-if policy questions. We started with a systems’ science approach to developing a cognitive map of the components and their interrelationships, as is increasingly done in participatory modeling and particularly in socio-ecological management. We transformed semi-structured interviews of 10 Indonesian experts into maps and assembled them to create the first comprehensive smart cities cognitive map for Indonesia, totaling 52 concepts and 98 relationships. While a cognitive map already provides support for decision-making (e.g., by identifying loops in the system), it is only conceptual and thus cannot form predictions. Consequently, we extended our cognitive map into a fuzzy cognitive map (FCM), whose inference abilities allow to examine the dynamic response of an indicator (e.g., ‘smart city’) in response to different interventions. As fuzzy cognitive maps include the strengths of interrelationships but not the notion of time, future research may refine our model using system dynamics. This refinement would support policymakers in investigating when to conduct and/or evaluate an intervention.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cognitive Computing,Cognitive maps,Context of use,Fuzzy cognitive map,Participatory modeling,Semi structured interviews,Socio-ecological,System Dynamics[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cognitive computing,participatory modeling,public policy,systems for smart cities[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The work of H. S. Firmansyah and P. J. Giabbanelli was supported by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia through research funding.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ACCESS.2019.2908622[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]