Enter your keyword

2-s2.0-85073327372

[vc_empty_space][vc_empty_space]

An integrated in silico and in vitro assays of dipeptidyl peptidase-4 and α-glucosidase inhibition by stellasterol from Ganoderma australe

Budipramana K.a,b, Junaidin J.c, Wirasutisna K.R.a, Pramana Y.B.d, Sukrasno S.a,e

a Pharmaceutical Biology Researched Group, School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
b Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya, 60293, Indonesia
c Muhammadiyah Tangerang College of Pharmacy, Tangerang, 15118, Indonesia
d Faculty of Industrial Technology, Universitas PGRI Adi Buana, Surabaya, 60234, Indonesia
e Department of Pharmacy, Sumatera Institute of Technology, South Lampung, 35365, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 by the authors. Licensee MDPI, Basel, Switzerland.Background: Ganoderma fungus is rich in terpenoids. These compounds are known for their anti-hyperglycemic activities. However, the study of terpenoids as the secondary metabolite from Ganoderma as a dipeptidyl peptidase-4 (DPP-4) inhibitor remains unexplored. In addition, we examined the a-glucosidase inhibition activity. Objective: This study aimed to isolate the major terpenoid from non-laccate Ganoderma and examined its inhibitor activity on DPP-4 and a-glucosidase enzymes, and its interaction. Methods: The compound was isolated using column chromatography from Ganoderma australe. The structure of the isolated compound was confirmed by 1H and 13C nuclear magnetic resonance spectroscopy, while the inhibitory activity was evaluated using an enzymatic assay. The interaction of the isolated compound with DPP-4 and a-glucosidase enzymes was investigated using an in silico study. Results: The isolated compound was identified as stellasterol; IC50 values for DPP-4 and a-glucosidase inhibitor were 427.39 µM and 314.54 µM, respectively. This study revealed that the inhibitory effect of stellasterol on DPP-4 enzyme is through hydrophobic interaction, while the a-glucosidase enzyme is due to the interaction with six amino acids of the enzyme. Conclusion: Stellasterol is the major component of the steroid from G. australe. Enzyme inhibitory assay and in silico study suggest that stellasterol may contribute antidiabetic activity with a mechanism closer to acarbose rather than to sitagliptin.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Diabetes mellitus,DPP-4-inhibitor,Ganoderma,In silico,Stellasterol,α-glucosidase inhibitor[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors are sincerely grateful to the Indonesia Endowment Fund for Education (LPDP) for sponsoring this project. The authors wish to thank Kimia Farma and Dexa Medica for kindly providing the sitagliptin and acarbose. The authors are also thankful to Dewi Susan from Research Center for Biology, Cibinong, Indonesia Institute of Sciences (LIPI), for helping to isolate and interpret DNA results of Ganoderma species. The authors are grateful to Frangky Sanghande from Pharmacy Prisma University for great discussion and Syaikhul Aziz from Pharmacy Sumatera Institute of Technology for helping interpret NMR results.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3390/scipharm87030021[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]