Enter your keyword

2-s2.0-84886259682

[vc_empty_space][vc_empty_space]

High temperature oxidation behavior of co-based coating at 800° C as alternative coating material for SOFC interconnect

Setiawan A.R.a, Suratman R.a

a Research Groups of Material Science and Engineering, Institute of Technology Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Cobalt based oxide are promising as coating material for solid oxide fuel cell interconnect due to their high oxidation resistance and conductivity. In this report, Co-based coating layer was deposited on AISI 430 ferritic stainless steel substrate using thermal spray methods. The high temperature oxidation behavior of Co-based coating was studied in air atmosphere at 800 °C. Optical and SEM observation shows that the total thickness of Co-based layer was about 100-120 μm. The coatings were mainly growth by the melted particles impacting on the substrate that flatten to form splats which later on piled on top of the others. Phase identification by XRD showed that the coating layer contained Co3O4, and NiO oxides. EDS analysis indicated that the coating layer were sufficient to prevents the formation and the growth of Cr2O3 scale. The Co-based coating shows relatively a large mass gain during oxidation compared to the uncoated steel, with parabolic rate constant, Kp = 4×10-15 gr2.mm-4.ks-1. © (2013) Trans Tech Publications, Switzerland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]AISI 430 ferritic stainless steels,Coating material,High temperature oxidation Behavior,Parabolic rate constants,Phase identification,SEM observation,Sofc interconnect,XRD[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cr2O3,Oxide,SOFC,Thermal spray,XRD[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.4028/www.scientific.net/AMR.789.498[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]