Enter your keyword

2-s2.0-85092791532

[vc_empty_space][vc_empty_space]

Automatic segmentation scheme for effective synchronization of EMG-EEG quantification

Suprijantoa, Noor A.S.a, Risangtuni A.G.a, Susanti H.a

a Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 North Atlantic University Union NAUN. All rights reserved.Effective segmentation of electromyography (EMG) burst that synchronizes with electroencephalography (EEG) for long-duration recording is important steps to better understand the quantification of brain-muscle connectivity in periodic motoric activities. The work proposes an alternative automatic EMG segmentation scheme consists of four main steps, i.e. denoising of EMG burst signal using discrete wavelet transform, enveloping signal using time-windows averaging of RMS amplitude, an adaptive threshold to detect start/end burst envelope with accommodation of muscle contraction characteristic and the final step is conversion enveloping signal to binary segmentation signal. The proposed scheme is evaluated to detect contraction period/duration of EMG for the subject under repetitive holding and releasing grasp using a physiotherapy device. During exercise, the bio-amplifier board is customized to acquire simultaneous EEG and EMG from the region of flexor digitorum superficialis (FDS) of muscle and cortical motor of the brain, with total 284 EMG burst that counting by manual segmentation. The automatic segmentation can detect the total EMG burst by 6.25% error of false burst detection. The usefulness of proposed scheme is also tested to association analysis according to the power of EMG burst and the power of mu-wave of EEG recorded on the motor cortex. The changing trend of the power of mu-wave associated with muscle relaxation, muscle contraction strength and the synchronization level on the motor cortex during exercise are analyzed with integrated information that is relevant with biofeedback concept. The results demonstrate that proposed scheme has potential to be an effective method for the evaluation of biofeedback rehabilitation exercise.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]EMG segmentation,EMG-EEG quantification,Enveloping signal[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT We acknowledge Institut Teknologi Bandung, Indonesia that Funding for Community Services and Innovation Research Program 2020.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.46300/91011.2020.14.19[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]