[vc_empty_space][vc_empty_space]
Photoluminescent ZrO2:Eu3+ nanofibers prepared via electrospinning
Suryamas A.B.a, Munir M.M.a,b, Ogi T.a, Hogan Jr. C.J.c, Okuyama K.a
a Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Japan
b Department of Physics, Institut Teknologi Bandung, Indonesia
c Department of Mechanical Engineering, University of Minnesota, United States
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Europium-doped zirconium oxide (ZrO2:Eu3+) nanofibers were prepared via electrospinning, in which a mixture of zirconium chloride oxide octahydrate, europium nitrate hexahydrate, poly(vinyl pyrrolidone), dimethylformamide, and ethanol were electrospun at atmospheric conditions. Subsequent calcination to produce ZrO2:Eu3+ nanofibers with diameters around 300 nm. The crystal structure and photoluminescence of the ZrO2:Eu3+ nanofibers were studied as a function of dopant concentration and heating temperature. At a dopant concentration of 5 mol %, tetragonal phase crystals were observed. Photoluminescence spectra revealed several emission bands in the red region corresponding to the transition of 5D0 → 7FJ (J = 1; 2; 3; 4). Two most intense emission bands were observed at wavelengths of 606 and 591nm due to the forced electric dipole (5D0 → 7F2) and magnetic dipole (5D0 → 7F1) transitions, respectively. This work demonstrates that one-dimensional photoluminescent materials can be generated by a two step electrospinning and calcination process. © 2010 The Japan Society of Applied Physics.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]At-wavelength,Atmospheric conditions,Dopant concentrations,Electric dipole,Electrospuns,Emission bands,Europium nitrates,Europium-doped,Heating temperatures,Intense emission,Magnetic dipole,Photoluminescence spectrum,Photoluminescent materials,Poly(vinyl pyrrolidone),Tetragonal phase,Zirconium oxide[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1143/JJAP.49.115003[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]