Enter your keyword

2-s2.0-84938774918

[vc_empty_space][vc_empty_space]

Praseodymium doped ceria: The role of 4F-electrons of Pr Dopant in Doped Ceria

Alaydrus M.a, Sakaue M.a, Linh N.H.a, Aspera S.M.a, Wungu T.D.K.b, Kasai H.a

a Department of Applied Physics, Osaka University, Japan
b Department of Physics, Institut Teknologi, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© The Electrochemical Society.Oxides like ceria (CeO2) are very promising for solid electrolyte materials when doped by suitable aliovalent dopants, as they introduce high oxygen ion conduction leading to intermediate to low temperature operations (T ≤ 800°C). Over the past decades, engineering new compositions aiming at high ionic conductivity at lower operating temperatures has been a key issue of developing solid oxide fuel cells. However, the understanding of the underlying physics on the oxygen ion conduction in this system remains unclear. In this work, we discuss our DFT+U study on the effect of the 4f-electrons on Pr-doped CeO2. We found that, regardless of their localized nature tendency, we found significant contributions from the Pr-dopant 4f-electrons to the oxygen vacancy formation energy as well as the preferential site of the oxygen vacancy formation in comparison with the model of fully localized 4f-electrons, though the geometrical properties for each local minimum structure remain unaffected.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Electrolyte material,Geometrical property,Intermediateto-low temperature (ILT),Local-minimum structures,Operating temperature,Oxygen vacancy formation energies,Oxygen-ion conduction,Praseodymium-doped ceria[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1149/06801.0369ecst[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]