[vc_empty_space][vc_empty_space]
HOG-AdaBoost implementation for human detection employing FPGA ALTERA DE2-115
Adiono T.a, Prakoso K.S.a, Putratama C.D.a, Yuwono B.a, Fuada S.a
a School of Electrical Engineering and Informatics (SEEI), Institut Teknologi Bandung Jln. Ganesha No. 10, ITB Ganesha Campus, Bandung city, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 The Science and Information (SAI) Organization Limited.Human detection system using Histogram of Oriented Gradients (HOG) feature and AdaBoost classifier (HOG-AdaBoost) in FPGA ALTERA DE2-115 are presented in this paper. This work is expanded version from our previous study. This paper discusses 1) the HOG performance in detecting human from a passive images with other point-of-views (30 deg., 40 deg., 50 deg., 60 deg. and up to 70 deg.); 2) FPS test with various image sizes (320 × 240, 640 × 480, 800 × 600, and 1280 × 1024); 3) re-measurement the FPGA’s power consumption and 4) simulate the architecture in RTL. We used three databases as a parameter for test purpose, i.e. INRIA, MIT, and Daimler.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adaboost classifier,ALTERA DE2-115,FPGA,Histogram Oriented Gradients (HOG) feature,Human detection[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This paper is sponsored by Pusat Unggulan IPTEK (PUI) that was funded by The Ministry of Research, Technology and Higher Education, Indonesia[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.14569/IJACSA.2018.091042[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]