Enter your keyword

2-s2.0-85067791643

[vc_empty_space][vc_empty_space]

Preparation of Catalyst Cu-ZnO-MgO-Al2O3 for Direct Synthesis of DME

Swastika T.a, Ardy A.a, Susanto H.a

a Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Direct synthesis of DME catalyst was prepared using the co-precipitation method. The catalyst contained CuO/ZnO/Al2O3 about 40/27/33 (%-wt). Two types of catalyst were prepared, i.e. CZMA0 (Mg 0%-wt) and CZMA20 (Mg 20%-wt). Both of catalysts were activated using reducing gas (5% H2 and N2). The activity test was conducted by syngas model which contained (%-mole) 65% H2, 28% CO and 7% N2. The reaction was carried out in a fixed bed reactor at 5 bar, and temperature of 240, 250 and 260°C. Synthesis shown CZMA20 catalyst gave the highest catalytic activity with 73% of CO conversion and 66% of H2 conversion (5 bar and 260°C). Direct synthesis of DME was also carried out using a dual-catalyst, i.e. catalyst for methanol synthesis (M151, the commercial catalyst of methanol synthesis) and methanol dehydration (γ-Al2O3-ITB). The activity of dual catalyst shown 93% of CO conversion and 91% of H2 conversion. This activity was more stable than two other catalysts (CZMA0 and CZMA20).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CO conversion,Commercial catalyst,Coprecipitation method,CuO/ZnO/Al2O3,Direct synthesis,Fixed bed reactor,Methanol dehydration,Methanol synthesis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/543/1/012063[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]