[vc_empty_space][vc_empty_space]
Spectroscopy and microscopy of microfibrillar and nanofibrillar composites
Owolabi A.F.a, Saurabh C.K.b, Dungani R.c, Abdul Khalil H.P.S.b
a Federal Institute of Industrial Research Oshodi, Lagos, Ikeja, Nigeria
b Universiti Sains Malaysia, George Town, Penang, Malaysia
c Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2017 Elsevier Ltd. All rights reserved.This chapter investigates the spectroscopic and microscopic information of the microfibrillar and nanofibrillar cellulose and their potential suitability in biopolymer composite. A brief overview of the recent advancements in the surface chemistry of micro and nanocellulose is also discussed. Techniques like microscopy and X-ray diffraction are widely used to study the structure and properties of the cellulose micro and nanofibers. It is commonly observed that the width of fibrillar cellulose used for biocomposites ranges from 30 to 100. nm and estimated lengths ranges from 200. nm to several micrometers. There are significant difference in terms of size of the cellulose fibrils from micro to nano scale observed by scanning electron microscopy (SEM), transmission electron microscope (TEM), and atomic force microscopy (AFM). Chemical analysis and Fourier transform infrared spectroscopy (FTIR) show the similarities between spectra of cellulose fibrils with respect to the relative percentage crystallinity of the ε-cellulose. This shows that the chemical nature of the materials remain unchanged while the morphological dimension differs. Thermal gravimetric analysis is used to evaluate the grafting efficiency of both the nanocellulose and polymer matrix.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Biopolymer composites,Cellulose fibrils,Characterization methods,Grafting efficiency,Nanofibrillar,Nanofibrillar cellulose,Structure and properties,Thermal gravimetric analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Characterization methods,Composites,Microfibrillar and nanofibrillar,Spectroscopy and microscopy[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/B978-0-08-101991-7.00012-1[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]