Enter your keyword

2-s2.0-85063208846

[vc_empty_space][vc_empty_space]

Practical Implementation of A Real-time Human Detection with HOG-AdaBoost in FPGA

Adiono T.a, Prakoso K.S.a, Deo Putratama C.a, Yuwono B.a, Fuada S.a

a School of Electrical Engineering and Informatics (SEEI), Institut Teknologi Bandung, Bandung city, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.We reported the practical implementation of a real-time image-based human detection in FPGA. The Histogram of Oriented Gradients (HOG) features and the AdaBoost classifiers are used as an approach. The systolic array architecture based Support Vectoring Machine (SVM) processing is also implemented in our system. According to the results, it can be shown that the humans are successfully detected from a 1280 x 1024 of image resolution with 129 fps of frame rate, it is not only from the front and back views (horizontal axis) but also robust in human detection from different angles (vertical axis). We also compared our architecture with other works.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Ada boost classifiers,Histogram of oriented gradients (HOG),Horizontal axis,Human detection,Real time,Real time images,Systolic array architecture,Vertical axis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]AdaBoost,FPGA,HOG,Human detection,Real-time[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TENCON.2018.8650453[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]