Enter your keyword

2-s2.0-0032721073

[vc_empty_space][vc_empty_space]

Bayesian inversion with Markov chains-I. The magnetotelluric one-dimensional case

Grandis H.c, Menvielle M.d, Roussignol M.b

a Lab. Geophysique de l’Environnement, UMR UPS et CNRS, Univ. Paris Sud-Bât. 504, France
b Equipe d’Anal. Mathematiques Appl., Univ. de Marne la Vallee, France
c Jurusan Geofisika, Institut Teknologi Bandung, Indonesia
d Ctr. d’Etud. Environnements T., France

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]We use Monte Carlo Markov chains to solve the Bayesian MT inverse problem in layered situations. The domain under study is divided into homogeneous layers, and the model parameters are the conductivity of each layer. We use an a priori distribution of the parameters which favours smooth models. For each layer, the a priori and a posteriori distributions are digitized over a limited set of conductivity values. The Markov chain relies on updating the model parameters during successive scanning of the domain under study. For each step of the scanning, the conductivity is updated in one layer given the actual value of the conductivity in the other layers. Thus we designed an ergodic Markov chain, the invariant distribution of which is the a posteriori distribution of the parameters, provided the forward problem is completely solved at each step. We have estimated the a posteriori marginal probability distributions from the simulated successive values of the Markov chain. In addition, we give examples of complex magnetotelluric impedance inversion in tabular situations, for both synthetic models and field situations, and discuss the influence of the smoothing parameter.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bayesian inversion,Magnetotellurics,Markov chains,Stochastic algorithms[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1046/j.1365-246X.1999.00904.x[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]