Enter your keyword

2-s2.0-84864716179

[vc_empty_space][vc_empty_space]

A DFT-based analysis on H 2O molecule adsorption and dissociation on the rutile TiO 2 (110) and (100) surfaces

Aspera S.M.E.a, Adachi S.a, Kasai H.a, Kuncoro H.S.a,b, Dipojono H.K.b

a Department of Precision Science and Technology and Applied Physics, Osaka University, Japan
b Laboratory of Computational Materials Design, Research Group of Engineering Physics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]As part of the growing number of researches that contribute to the development of photocatalysis on TiO 2 that attests to its relevance in the future of alternative energy source, we present a comparative study on H 2O molecular and dissociative adsorption on rutile TiO 2 (110)-(1×1) and (100)-(1×1) surfaces using density functional theory (DFT)-based analysis. Here, we show that the H 2O molecule is more stably adsorbed molecularly on the TiO 2 (100)-(1×1) surface than on the (110)-(1×1) surface and that density of states (DOS) analysis on the system attributes this to the interacting Ti atom’s higher number of states below the Fermi level for the TiO 2 (100)-(1×1) surface compared with the (110)-(1×1) surface. Furthermore, dissociation, which entails formation of OH bonds on the surface, is more favorable on the TiO 2 (100)-(1×1) than that on the TiO 2 (110)-(1×1) surfaces as indicated by a smaller activation barrier on the analyzed dissociation path and a more stable dissociated state. These ̂ndings are relevant in considering the TiO 2 (100) surface in photocatalytic reactions which is shown to have good active sites for H 2O molecule interaction in terms of adsorption and dissociation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Activation barriers,Active site,Alternative energy source,Comparative studies,Density functional theories (DFT),Density of state,Molecular and dissociative adsorption,Molecule interactions,Number of state,O-H bond,Photocatalytic reactions,Rutile TiO,Ti atoms,TiO[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3131/jvsj2.55.341[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]