Enter your keyword

2-s2.0-85042494040

[vc_empty_space][vc_empty_space]

Diffusion in a temporally shrinkable medium

Cahyono E.a, Syam Abdullah S.M.a, Soeharyadi Y.b, Gubu L.a, Kimsan M.a

a Department of Mathematics, Universitas Halu Oleo, Kampus Bumi Tridharma Anduonohu, Kendari, Indonesia
b Analysis and Geometry Research Group, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Pushpa Publishing House, Allahabad, India.Some media often show shrinkage when the mass inside diffuses, such as wood, soil, clay and concrete. Shrinkage is responsible for developing cracks on clay, wood and concrete during the drying process. This paper is intended to understand the shrinkage better, so the defects of materials during and after the drying process can be avoided. A mathematical model of temporally shrinkable medium based on macro scale modeling is discussed. The model is in the form of an integral equation. This model does not allow the shrinkage process to reverse, as the case for concretes and clays after baking. The model is solved numerically by applying a finite difference method. The limiting case of non-shrinkable medium is presented. In this limiting case, the model is just a diffusion equation, and the numerical method is a standard finite difference method.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Diffusion equation,Finite difference method,Integral equation,Shrinkable medium,Shrinkage[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.17654/HM015010125[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]