Enter your keyword

Probabilistic fracture mechanics analysis of multiple cracks in cylindrical pressure vessel

Dirgantara T.a, Wicaksono T.S.a, Ahmad T.a, Sadikin I.a, Suharto D.a, Putra I.S.a

a Light-Weight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi, Indonesia

Abstract

In this work, a probabilistic fracture mechanics analysis of multiple cracks in a cylindrical pressure vessel was conducted. The analysis was performed to predict service life of a pressure vessel with a certain level of reliability if the vessel has a multiple internal surface cracks that interact each other. The stress intensity factor of multiple cracks configuration was determined from the stress intensity factor of a single surface crack in a plate subjected to uni-axial load and the interaction factor between the cracks. In this work, the Swift’s crack link-up criterion was employed. These parameters together with several other stochastic parameters, i.e. initial crack size, Paris’s crack propagation constants and fracture toughness, were then used to calculate the probability of failure with a certain level of reliability. The failure probability was simulated using guided direct simulation, for cycle-by-cycle crack propagation, to find the expected service life and the mode of failure (leak or break). A case study of a high-pressure vessel having different initial crack sizes have been simulated and the service life with 99,99% reliability were determined. © (2011) Trans Tech Publications.

Author keywords

Cylindrical pressure vessels,High-pressure vessel,Multiple crack,Probabilistic analysis,Probabilistic fracture mechanics,Probability of failure,Propagation constant,Stochastic parameters

Indexed keywords

Fracture mechanics,High pressure vessel,Multiple cracks,Probabilistic analysis,Stress intensity factor

Funding details

DOI