Enter your keyword

2-s2.0-85016059875

[vc_empty_space][vc_empty_space]

Comparison of prediction methods for moving objects in 3D coordinates using Kalman Filter and least square

Satriawan Y.S.a, Machbub C.a, Hidayat E.M.I.a

a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Jawa Barat, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 IEEE.This paper proposed for comparison of two methods used to predict the trajectory of a moving object in 3D fields using Kalman Filter and Levenberg-Marquardt Least Squares. The Kalman Filter needs dynamic model of the object to predict trajectory, different from The Levenberg-Marquardt method requires previous movements of the object, and the system can determine the next move, to perform this experiment a simulation of the motion was created that an object moving in 3D fields using MATLAB, the movement is also added random noise using normal probability to give real effect, where in fact, there are noise sensors that affect the performance of a system. An experiment proposed to test the speed of each method achieving convergent, and the endurance of each method to receive noise.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]3D coordinates,Least Square,Levenberg-Marquardt,Levenberg-Marquardt method,Moving objects,Noise sensors,Prediction methods,Random noise[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Kalman Filter,Levenberg-Marquardt,Normal Probability,Prediction,Trajectory[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/FIT.2016.7857551[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]