Enter your keyword

2-s2.0-85098263230

[vc_empty_space][vc_empty_space]

Extending multi-object detection ability using correlative filter

Retno Kinasih F.M.T.a, Machbub C.a, Yulianti L.a, Rohman A.S.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEERecently, numerous object detection methods are proposed and has been published by many papers and journals. Since the big hit of YOLO object detector in 2014, even lighter (thus faster) or more accurate method has been developed with good success. On the other side of computer vision advancement, the annual Visual Object Tracker (VOT) challenge is presenting us the newest state-of-the-art tracking methods, which are getting better for each year both in terms of accuracy and speed. In an object detection system with a goal to identify the surrounding environment, it is beneficial to take advantages from rapid development in both object detection and object tracking method. The combined method is able to automatically detect and identify which object is which in subsequent frames with a considerable performance for indoor settings.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Combined method,Detection ability,Object detection method,Object detection systems,Object detectors,State of the art,Surrounding environment,Tracking method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Correlative filter,Object detection,Object tracking,Speed (in frame per second)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENTS The authors thanked the Ministry of Education and Culture of the Republic of Indonesia for funding this research through the Penelitian Disertasi Doktor (Doctoral Dissertation Research) scheme.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICSET51301.2020.9265350[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]